PRACTICE MIDTERM 2 (CHRIST) - SOLUTIONS

PEYAM RYAN TABRIZIAN

(1a) $y^{\prime}=x^{\ln (x)}\left(\frac{2 \ln (x)}{x}\right)$ (this is just logarithmic differentiation, here are the steps:)
(i) $y=x^{\ln (x)}$
(ii) $\ln (y)=\ln (x) \ln (x)=(\ln (x))^{2}$
(iii) $\frac{y^{\prime}}{y}=2 \frac{\ln (x)}{x}$
(iv) $y^{\prime}=y\left(2 \frac{\ln (x)}{x}\right)=x^{\ln (x)}\left(\frac{2 \ln (x)}{x}\right)$
(1b) $f^{\prime}(x)=\frac{1}{2 \sqrt{\arcsin (x)}} \frac{1}{\sqrt{1-x^{2}}}$ (this is just the chain rule)
(1c) $f^{\prime}(x)=-2 x^{-3} e^{3 x}+3 x^{-2} e^{3 x}$ (this is just the chain rule)
(1d) Differentiating, we get: $4 x^{3}-3 y-3 x y^{\prime}+6 y^{\prime} y^{2}=0$, now plugging in $x=2$ and $y=1$ and solving for y^{\prime}, we get: $32-3-6 y^{\prime}+6 y^{\prime}=0$, so $29=0$, but this is never true, so $\frac{d y}{d x}$ is undefined at $(2,1)$
(2a) By using L'Hopital's rule once:

$$
\lim _{x \rightarrow \infty} \frac{x^{\frac{1}{3}}}{\ln (x)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{3} x^{-\frac{2}{3}}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{1}{3} x^{\frac{1}{3}}=\infty
$$

(2b) By using L'Hopital's rule twice:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2}
$$

(3a) (i) Endpoints: $f(-1)=-16, f(5)=20$
(ii) Critical points (1 and 3): $f(1)=4, f(3)=0$
(iii) Absolute maximum: $f(5)=20$
(3b) From $x y^{2}=3$, we get $x=\frac{3}{y^{2}}$, so $9 x+y=\frac{27}{y^{2}}+y$.
(i) Let $f(y)=\frac{27}{y^{2}}+y$
(ii) The constraint is $y>0$
(iii) Then $f^{\prime}(y)=\frac{-54}{y^{3}}+1$. And $f^{\prime}(y)=0 \Leftrightarrow \frac{-54}{y^{3}}+1=0 \Leftrightarrow y=\sqrt[3]{54}=3 \sqrt[3]{2}$
(iv) Also, it's easy to check that $f^{\prime}(y)>0$ when $y<3 \sqrt[3]{2}$ and $f^{\prime}(y)<0$ when $y<3 \sqrt[3]{2}$. So by the first derivative test for absolute extreme values (section 4.7), it follows that $f(3 \sqrt[3]{2})=\frac{3}{2^{\frac{2}{3}}}+3 \sqrt[3]{2}$ is the absolute minimum of f.
(4a) $y=a x+b$ is a slant asymptote to the graph of f at $-\infty$ if:

$$
\lim _{x \rightarrow-\infty} f(x)-(a x+b)=0
$$

(4b) $f(c)$ is a local minimum; Cannot conclude anything (this is not the same as saying there is no local minimum/maximum)
(4c) $L(x)=e^{3}+e^{3}(x-3)$
(5) Let $f(x)=\ln (x)-(x-1)$, and suppose that $x>1$. Then, since f is differentiable on $[1, x]$, by the Mean Value Theorem:

$$
\frac{f(x)-f(1)}{x-1}=f^{\prime}(c)
$$

for some c in $(1, x)$.
Now $f(1)=0$ and $f^{\prime}(c)=\frac{1}{c}-1<0$ (since $c>1$), whence we get:

$$
\frac{\ln (x)-(x-1)}{x-1}<0
$$

Now multiplying by $x-1>0$, we get:

$$
\ln (x)-(x-1)<0
$$

That is, $\ln (x)<x-1$

